
MATHEMATICS OF COMPUTATION 
VOLUME 42, NUMBER 165 
JANUARY 1984, PAGES 151-164 

Approximation of Complex Harmonic Functions by 
Complex Harmonic Splines 
By Han-Lin Chen and Tron Hvaring 

Abstract. In this paper, a class of complex harmonic spline functions (C.H.S.) are defined on 
the unit disc U. We use the C.H.S. to approximate the complex harmonic function on U, 
showing that C.H.S. may be represented by elementary functions. If the maximum step tends 
to zero and the mesh ratio is bounded, then C.H.S. converge uniformly to the interpolated 
function F on the closed disc U. If the interpolated function F is a conformal mapping, then 
the C.H.S. is a quasi-conformal mapping. 

1. Introduction. This paper deals with the spline approximation of a complex 
harmonic function defined on the unit disc U. 

Since an important subclass of complex harmonic functions is the class of analytic 
functions, we are naturally interested in the following problem: can we use the 
splines to approximate a conformal mapping? We shall explain the reasons for using 
splines for this purpose. 

It is well known that any simply connected domain D contained in a closed 
Riemann surface, whose boundary r is a continuum, can be mapped conformally on 

IZI < 1. 
In practice, the important thing is to construct the mapping function, but as we 

know, if the domain is arbitrarily prescribed, it is difficult to obtain the analytic 
expression of the mapping function. For this reason, mathematicians devote a lot of 
work to develop approximations to the mapping function. 

Recently, L. Reichel used the Lagrange interpolation polynomials for equi-spaced 
points on the unit circle y to approximate the mapping function which maps the unit 
disc U onto a simply connected domain D [9, pp. 32-34]. The data of function 
values were obtained by solving a system of integral equations derived from D. 
Gaier's theory [7]. The method used in that paper [9], combined with analytic 
techniques and Fast Fourier transformation, is effective in some cases. 

We note, however, that in general, the Lagrange interpolation polynomials do not 
converge uniformly to the mapping function F( Z) on the closed disc U [6]. 

Ahlberg, Nilson and Walsh [1], [2] used analytic splines. These functions can be 
proved to converge uniformly on a closed point set interior to y, but not on the 
closed disc U. 

Instead of Lagrange interpolation polynomials and analytic splines, we used 
complex harmonic splines to approximate a complex harmonic function defined on 
U. The formulas and the error bounds were given in [3]. 
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The complex harmonic splines (C.H.S.) have the following properties: 
(i) If the maximum step JAI tends to zero, and the mesh ratio R is bounded, then 

C.H.S. converge uniformly to the interpolated function F(Z) on the closed disc U. 
(ii) C.H.S. may be represented by elementary functions. 
(iii) If the interpolated function F( Z) maps U conformally onto a simply 

connected domain D satisfying the Ljapunov condition (see after Remark 2) and 
lA = maxjlZ4 - Z- I (the maximum step) is sufficiently small, then the C.H.S. 

maps U onto a simply connected domain and this mapping is univalent, in fact, it is 
a quasi-conformal mapping [3]. 

In [3], we used complex pseudo-interpolation splines as the boundary function of 
C.H.S., and we stipulated that the approximated functions F(Z) have absolutely 
continuous nth derivatives (n > 2) on y (see [3, Theorems 1-4]), where the pseudo- 
interpolation splines are piecewise polynomials of degree n. 

In this paper, we use the complex cubic interpolation spline function as the 
boundary function of C.H.S. Under a much weaker condition we can prove that (i) 
and (ii) are still valid, and we obtain the error bound in an explicit form (Theorems 
1,2). 

Under a weaker condition, we prove that (iii) is also valid (Theorems 3,4). 
In the last paragraph of this paper we give formulas for the calculation of the 

C.H.S. and a program which implements the C.H.S. in practice: 
If g = g( t), 0 < t < 2, is the parametric representation of the Jordan curve r, then 

the following program is performed. 
Input: g = g(t). Output: The graph of C.H.S., where C.H.S. is the approximation 

of the conformal mapping F(Z) which maps U onto a simply connected domain D. 
To save space, we delete the program and the graphs; they may be found in [5]. 

2. C.H.S. Approximation. A real function u(x, y) belonging to C2(D) is said to be 
harmonic in D if it satisfies the Laplace equation Au = 0. 

If u, (j = 1,..., n) are harmonic functions in D, and a1 (j = 1. n) are 
complex numbers, then the function u = En a,u1 also belongs to C2(D) and satisfies 
the Laplace equation, but u is a complex-valued function; we call it a complex 
harmonic function and denote by H(D) the family of all such functions defined 
on D. 

A nonconstant complex harmonic function u(Z) cannot have a maximal absolute 
value in its domain of definition. Consequently, the maximal value Iu(Z)l on a 
closed set E is attained on the boundary of E. 

H(D) contains a wide class of functions, for instance, the function P(Z) defined 
by the Poisson formula 

I 2n0 fe' + Z 
P(Z) = 2- J w(e')ReI , ) dO, Z E U, 

where w(g) is any complex continuous function defined on y, y is the boundary of 
U, and U the unit disc; evidently, P(Z) e H(U). 

Let A = (ZI, ..., ZN) be points on -y arranged in counterclockwise order, separat- 
ing y into yj ( 1, N) with y, being the arc from Z, to Z, + I ( ZN J I = Z )I 

We stipulate: Zj+,1 -= IYI < -r (j = 1, N). 
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Given complex data Y,,..., YN,, there exists one and only one complex cubic 
spline function S(Z) with nodes A on y such that S(Zj) = Yj, j = 1, N; see [4]. 

The Poisson formula 

(I) P(Z) = 2 
1T| S(e'O)ReX 

e 
z) d@, Z E- U, 

2TT()g e'6 -z 

defines a function P(Z) on U, where S(t) is a complex spline function on y. We 
then call P(Z) the complex harmonic spline (C.H.S.) on U. 

Now we use the C.H.S. to approximate a function belonging to H(U) f C(U). 

THEOREM 1. Let F(Z) be a complex harmonic function on U, continuous in the 
closed disc U. Let P(Z) be the complex harmonic spline defined by (1), where S(') is 
the complex cubic spline interpolating at Z4, S(ZJ) = F(Zj),j = 1,..., N. Then, P(Z) 
converges uniformly to F(Z) in the closed disc U. Moreover, we obtain the error 
estimation 

(2) |F(Z) - P(Z)| < K(R)w(F,IAI), Z E U, 

where 

K(R) = Min(5.13R + 7.13, 0.07R2 + 1.5), 

R = MaxlZ+, - Z4/MinlZj+ - ZJ 
I I 

and X is the modulus of continuity of F on y, IAl = MaxjIZ?+I - Z41 

Proof. Since the error function E(Z) = F(Z) - P(Z) belongs to H(U), by 
Schwarz's theorem and the condition on F we conclude that E(Z) is continuous in 
U. If we can estimate E(Z) on y, then, by the maximum modulus principle, (2) 
follows. 

Now we prove the following 

LEMMA 1. Let Y(Z) be continuous on y, and S(Z) be the complex cubic spline with 
nodes A such that S(Z4)-= Y(Z4) (j = 1, N). Then we have 

(3) JS(Z) - Y(Z)l < K(R)w(Y,IAI), Z E y, 

where R is the mesh ratio defined in Theorem 1, and W(Y, Al) is the modulus of 
continuity of Y on y, K( R) being defined as in (2). 

Proof. For Z on y,_I (yJ I I -Z I Z) 

S(Z) 2 1(Z _Z)2(Z _ Z )_m (Z Z (Z _Z) 

(4) + Zh3 y 

+ h3 (zi- )2[2(z1 - z) + hj>1], 

where h,_, = 4Zi Z,_ Y, = S(Z,), mj = S'(Zj). 
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The -quantities mi satisfy the requirement that S j2)(4 - )= S(2)(Z,+ ) for 
j = 1, N: 

(5) ajm.,- + 2mj + bjm.,+ =Qj, 
where 

aj h + I b aj, Qj =3aj J + 3bj ' 

(5) may be written in matrix form as 

(6) Am= Q. 
Since we can prove the following inequalities: 

(7) IIA-'1III < (7) IAI114minj(2 - lajl- lbjl) 2-F2 

i(z - z |1)(z - zj)2 lhj_ 1 f 
Ai( 

=_ 
h 12< 2 for Z E- y1 

I(z - z-.1)2(z - z1)j Ihi-11j zh1_ I2 4 2 for Z E' -y>1 

g() = 3 A 2 
2A' A< = A Z - l(y Z)ZE 3X2X 

1 
Z iZ Y 2h1-I hi 

it follows from (6) and (7) that 
N 

8Mjl -< max lQkl j IAJ-' maxklQkl 

For Z E Yk- 1, in view of (4), (7), (8) we have 

(9) IS(Z) - Y(Z)I < maXlmkl(Ak(Z) + Ik(Z)) + g(X)I Yk Yk-11 

+ Yk-I Y(Z) 2 

m 2MaxkIQkI, | + | k + Yk) 
I 

Y( 11 

From (9) we can easily prove the following inequality 

(10) IS( Z) - Y( Z)I < (5.13R + 7.13)( Y, JA1). 
On the other hand, the continuity of S'(Z) at Z yields the following expression 

(11) bjMjA I+2(MJ+aJaMJ+, =IPj, j= 1,N, 

where 

- S()(j), pi= 6(hj1, + hi)[ hi h1- 

(11) may be written in matrix form as 
(12) BM = P. 
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Since we can prove the following inequalities: 

(1l3) JIB-'I}I < (2 -4 V 

2~~~~11j 
laj R(Z1 - Z) Z h- 2 1]1 16hj-II < 12 forZ E Yj-1, 

~~~~~~~~~) 6 ih 
2 for ||-|(Z- z}_I)( } - z}2 l]II_ I I 1 for Z E- -yj- 

4,i 
W( 

Y,IAI) I l3V2 Ih1 hj_ II 

it follows from (12) and (13) that 

(14) imii < 
(1 + V2Iw(Y, jAI)) j ..IN 

(14) j 6Minklhkhk1lN 

For Z E Y,, in view of (13), (14), we have 

(15) IS(Z) - Y(Z)J =a I + 8M + ( 21 Y(Z)) 

_ (yi _ ) Zi + Z>i-2Z 

3 2 16 RI )R)w(Y,l,A) < (1.5 + 0.O7R2)w(Y,1A2). 

(3) is obtained from (10) and (15). 
Remark 1. A similar estimate for the real periodic cubic splines and functions 

f E C(-o, oo) has been obtained by Sharma and Meir [111, where they have an 
error O(R2)W(S) 

From Lemma 1, the proof of Theorem I is complete. 
We note that the coefficient K(R) in the error estimation (2), (3) is a function of 

R. If R = 1 or R > 1 but not too large,* then K(R) = 1.5 + 0.07R2; if R is 
sufficiently large, then K(R) = 5.13R + 7.13. 

Remark 2. From Theorem 1, we see that if IAl - 0, and R is bounded, then P(Z) 
converges uniformly to F( Z) on the closed disc U. 

In particular, if F(Z) is analytic in U and continuous in U, then the approxima- 
tion C.H.S. P(Z) converges uniformly to F(Z) on the closed U. 

Let D = t(t) (O < t < 2Xr) be the parametric representation of F. Suppose 0 < 

1't()j < co. Then Y= F(Z4) (j = 1, N) may be obtained by solving the integral 
equations as in [9], [10], and then the cubic spline S(Z) which interpolates F(Z) at 
4(1 = 1, N) may be easily constructed [4]. 

The closed Jordan curve F is said to satisfy the Ljapunov condition (see [8, p. 
1221), if it can be represented by D = c(s), 0 < s < L, where L is the length of F and 
s the arc length of F, measured from a fixed point, such that if s varies from 0 to L, 

* In fact, if R > RI (= 74.40), then K(R) = 5.13R + 7.13; if I S R < R1, then K(R) - 0.07R2 + 1.5, 
where R1 is the positive root of the equation 7R12- 513R - 563 = 0. 
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then '(s) makes one turn on F in the positive sense, r has a tangent at every point, 
which varies continuously, and ?'(s) satisfies the following Holder condition: 

IN'(s) - NS(s2)I < JIsI - S21j, 0 < a < 1,J = const. 

If the funttion W = F(Z) maps U conformally onto D and r = aD satisfies the 
Ljapunov condition, then F'(Z) exists in U, is different from zero, and satisfies the 
same Holder condition: 

|F'(e') - F'(eiO2)) < KO, - 021a, k = const 

(see [8], [12]). 
It follows that F'(Z) is continuous in U [8, p. 122]. 

LEMMA 2. If r satisfies the Ljapunov condition, and W = F( Z) maps U conformally 
onto D, aD = r, and S(Z) is the complex cubic spline which interpolates F(Z) at 
A = (Zj)'-the knots of S(Z)-then, for Z e y, y = au, we have 

(16) IS(Z) -F(Z)| <, KIIAI , Z GE y, 

(17) IS'(Z) - F'(Z)I < K21AI, Z E -y, 

(18) (S'(t1) - F'(t1)) - (S'(Ot - F'(T2)) < Kt - t1 l,2 e 

for any 8, 0 < 8 < ai, where R is the mesh ratio and 

JAI= maxlZj - Z-Il, 
J 

K1 =2 K2 K2 = (26 + 14V ) + l( 2) 

K3= (38 + 40V2i ~+l Ie 
a + 1 2 )(2) 

Proof. From (5), 

(19) A(m - iQ) = (3I - A)3Q. 

Thejth element of the vector (3I - A) Q may be estimated as follows. Since 

(20) | fj+'(FI(t)-F(Zj, )) dt 

we have 

(21) [(3I- A) - Q] = -ajQJ1 + Qj 
b 
bQj3 1 

3 3 3 

k + I ~~~4K I~T\+AI 

< 4 max 
T+ (F'(t) 

-F'(Zk+ 
l) 

dt 

From (19), we have 

(22) |m - -bj hj+ j + 
j 

- 
hj -I) 
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Therefore, from (20), (22) and aj + bi = 1, we find 

(23) |i- F,-Fj j 
- bj-(bfj i + aj 1 j 

- 
)| 

+ J+' (F'( - F'(Zj)) dt 

- 
L 

(F'(t) 
- 

F'(Zj)) dt 

2 (2 2 + 1)a + 1 2 Al) 

Furthermore, 

F-1y1 ~3e2 1 F - F 
(24) |S'(Z)- h | -2 4 mjl + m1-2 i h 

+ Iml-mj 
- 

mjjfor Z e yj-11, 

where 

Zj + Zj_ 

and evidently, 

_h____ 3E2 ! 7 
(25) e 4 S 4 

Let 

(26) Yj fZJ h (F'(t)-F'(Zj+ )) dt. 
hiz 

Then, from (20), (22), 

(27) Imj - mjlI I mj- -'h i -I 
mj(1- i Ih )|j +Ij-) Yj2 

( 2 - +3) x a2 +1 ( 2) lla 

Combining (24)-(27), we obtain 

(28) S'(Z) (25 + 14V) + 1 2J (2 )Z E y,- - 

Thus, for Z e yj 

IS(Z)-F'(Z)l <.S'(z)- ih 
- 

| + Z. Fj(Z)- F(t)) dt 

< (26 + 142) K l (2)+1a . 
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Inequality (17) is proved. 
Inequality (16) follows from (17) by an integration. Since 

||mj_l I h i_ h j_, 
(29) hS'(Z) - S'(t)l|=|Z -1 t J-1 +1 

x 3(Z + t) J6 + m - mj 

2 =(Zj-I + z1), t, Z e Y 

from (23), (27), (29) and 1(3(Z + t) - 6Z)/hj 1 < 3C2, we have 

(30) IS'(Z) - S'(t)J < 2(l9+2 /) (7 2 +) KIAIG Z-t 

Therefore, if Z, t E y- i, we have 

(31) i(S'(Z) - F'(Z)) - (S'(t) - F'(t))l 

<[L9:+OVIi 7rR + I - KIZ - tl, 

where R = IAI/minjlZ, -Zj-1 
If, on the other hand, Z e yj, t E y,,j * 1, we distinguish three cases: 
(I) If it - Zi > JAl, then from (17) 

(32) (S'(Z) -F'(Z)) S-'(t) F'(t))l < 2K218 < K -ZIG 

(2) If It - < I, IZ - tl > minjlhjl, then from (17) 

(33) I(S'(Z) - F'(Z)) - (S'(t) - F(t)) K2 1A8 < K Z 

(3) If It - Zl < JAI and IZ - tl < minlhjl, we assume, without loss of generality, 
that t E yj+ 1, Z e yj. Then 

(34) I(S'(Z) - F'(Z)) - (S'(t) - F'(t))l 
II e 

t-8 

I(S'(Z) - F'(Z)) - (S'(Zj+ 1) -F'(Aj+ I)) 
IAI a-8 

I(S'(t) - F'(t)) - (S'(Zj+1) - F'(Zj+1))I 
II la-8 

< K'(lZ -zj+, + it - Zj+ 8) < 2K'iZ -tl < K31Z -tl 

where 

r 19= + 2V + ) a + 1 2Ta 
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the second inequality being obtained from (31). 
From (31)-(34), formula (18) follows. Q.E.D. 
Remark 3. Ahlberg, Nilson and Walsh in [1] estimated the order of errors. Here 

we estimate not only the order of the errors but also give the explicit form of the 
error coefficients. 

THEOREM 2. Let F satisfy the Ljapunov condition. Let W = F(Z) be the mapping 
function from U onto D, S(Z) the complex cubic spline which interpolates F(Z) at 
A = (Zj}7,, and P(Z) the C.H.S. with the boundary function S(Z). 

Then, for all Z E U, we have 

(35) IP(Z) - F(Z)l < K1IAII+a, 

(36) iPz(Z) - F'(Z)I (Aja/2' 

(37) _P-(Z)l , (I/ja/2' 

where ( = (2a/2/a)K3 + K2IAja/2, Pz, Pi7are complex derivatives (see [3]). K1, K2, 
K3 are constants as in Lemma 2. 

Proof. (35) is obtained directly from the maximum modulus principle and (16). 
Now we prove (36). 

Let Tp(', ZO) represent the function (S'(D) - F'(')) - (S'(ZO) - F'(ZO)); from 
(18), 

J*p(', Zo)I < K31AI 1 - ZolJ. 

We have [3] 

(38) lPzZ() -F( )l < Suzpy (i 27 ly zo "dN S (Z) -F (Z)| 

Since 

(39) f1 - Z01 Idil < 27T/8, 

let 8 = a/2; then 

(40) |lrqJ(r, Z0)dG| ) 2a/2 ./2 

From (17), (39) and (38), for Z E Uwe have 

(41) IPZ(Z)-F'(Z)I[ < [/ K3 + K2IAa/2jA2a/2 = .Ia/2 

(36) is proved. 
For Z E U, from (18) and (39), we have [3] 

IP;'z) I <I Sup J ( S'(D) 
- 

Z0S'(ZO)) 
- 

(~F'() 
- 

Z0F'(Z0))d| 

I Sup (s'(f ) - F'(?)) -(S'(ZO) -F'(Zo))] + (t-ZO)(S'(ZO) - F'(Z0)) 
2 zo e -y Y Zo 

' 
(K,|AI 28-1 + 27TK21A1 ). 
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Let 8 = a/2; then 

(42) IP1(Z) I a/2 for Ze U. 

(37) is thus proved. 

THEOREM 3. If r satisfies the Ljapunov condition and P(Z) is the complex harmonic 
spline defined in Theorem 2, and if 

1 1 1/2 
(43) A < 2K 42aa-2K3 + 2K2 min I F'(Q)I] -2a/2a-&K3} 

then P(Z) is an open mapping on U. 

Proof. The Jacobian J( Z) does not vanish, since from (43), 

J(Z) =jIPZ(Z)1 -|PZ (Z)1 >I F'(Z)I(|F'(Z)l - 2TIAI/a2) > O 
for all Z E U, thus P(Z) is an open mapping. Q.E.D. 

THEOREM 4. If r satisfies the Ljapunov condition and P(Z) is the complex harmonic 
spline defined in Theorem 2 and if 

(44) l < ([2aa -K + 2K2mF] /2 - 2a/2C,K )K 

where 

m F(ZI)-F(Z2) 
Z7i, Z2y -Z2 

then W = P(Z) is a homeomorphism. 

Proof. From Kellogg's theorem [12, pp. 361-364], it is easy to see that mF > 0. 

Define 

H( = (Z) P(ZI) F F(Z2) -F(Z,) 

Then 

(45) JH(Z1,Z2)-F(ZI, Z2) I I -- aFdl 

- iL'II(Pz - F')e'? + (Ps- O)eleIdl 

<Z_ ZI Sup JPz(Z) - F'(Z)l + Sup IjPZ (Z) dl 
1Z2 IZ G Z-y iZIfd 

where 1 = IZ2 - Z,1, aP/alo, aF/alo are the directional derivatives along the straight 
line joining Z, and Z2, and 0 is the inclination of the line Z, Z2. 

It follows from (45) that 

(46) (MF- 241 A/2)IZ2 - Z,l IjP(Z2) - P(Z,)I < (MF + 2AJ I/2 )IZ2 - Zll 

(46), (44) lead to the following conclusion: P(Z2) = P(Z,) if and only if Z, = Z2. 
Q.E.D. 
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Following the proof given in [3] we conclude that if F and P(Z), F(Z) are defined 
as in Theorem 2, then P(Z) maps U onto a simply connected domain Dp. The 
mapping is one-to-one. Moreover, 

Lim Dp = D, D is the interior of f, 
IAI-0 

p 

in Caratheodory's sense. 

3. The Calculation of C.H.S. and Examples. We rewrite the C.H.S. as follows 

(47) "P(Z) = P,(Z) + P2(z), 

where 

P2( 
A) 1 A(Z ( 

Z e U, y = aU. S(') is the interpolating cubic spline. 
Suppose that S(g) = Sj('), t e yj, yj = ZjZj+ ; then (see [2], [3]) we have 

(48) P1(Z)= 2 i E S(Z)f J+; dZ 

= N 7Z(n ZtlZ + IAj 
j+(Z Sj (Z) Ln j+ i j I (Z) 

= darg( -Z 

(50) +(Z) = +darg( - Z). 

Both functions 2,T,+ ,(Z), j j(Z) are single valued and continuous. hey may 
be calculated as follows. 

Denote by lj j+,the straight line joining the points Zj and Z>. ~; the Z-plane ?2 is 
divided by lj j+ into S2 and 022 say, the half-plane 022 contains the circular arc y1 (we 
have stipulated that IY1I < t 

Then Aj j+, zj may be represented as follows: 

{A, ZeUntI2, 

z2s - A, Z EUn0 

where 

(52) A = cos((A (Xj-X)(Xj+,-X)+(Yj-Y)(Yj+,-Y) 
, (( ,) + - - + (1>, - y)d)g2 )' 

Zntb , lj j+iYj, Zj+, =li +, + iY+,, Z = X + iY. 
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{-A Z zE CUfn 0 2 

(53) z +I) Z E CU n l1,_I+, 

IA, ZeCUn 2,, 

where A is calculated as in (52) but we use Z = X + iY instead of Z = X + iY. 
Let t be a point in E2, the straight line joining the point t and Z = 0 is denoted by 

1; let ZO (if it exists) be the intersection of I with 1X j, . Then 

(54) e a if and only if Itl = I It - Zol - Izoi | or 11l11 'J+ X, 

(55) E Q2 if and only if Itl = IZol + It -Zol 

(56) E 1 + if and only if I|l = IZOI. 

But in the programming, instead of (54), (55), (56) we use 

(57) 1I4 > I I -ZoI -ZoI - E, 
(58) 141 < IZOI + it ZOI + El 
(59) |I- EC < I ZOI <1 |I+ E., 
respectively, where E is a small number, say, 

IE| I 10X8. 

From the formulas (47)-(59) the values of P(Z) (for Z U) may be calculated if 
the spline function S(D) is given. 

Now S(Z) may be written as 

(a3Z3 + a2Z2 + a,Z + ao, Z E YN' 

(60) S(Z) = /k 
a3Z3 + a2Z2 + a1Z + ao + E C(z-Z1)3. Z E Yk 

k= I,.,N, 

and (CJ)J-. , satisfy 
N 

E CjZ'=O, 1=0,1,2,3. 
J = I 

If (F(Z,))7., are given, then S(Z) may be obtained by solving the system of 
equations: 

(S(Z) = F(Zj), V= i,N, 

(61) 
~~~N (61) i 
,~~~~ C,Z,I = 0, I = 0, I, 2, 3. 

i=1 

It was proved in [4] that the system of equations (61) can be solved uniquely for 

(aj)3_0 and (C,)j 
In particular, the data values of a conformal mapping function may be obtained 

as follows: 
Let W = F(Z) be a mapping function, such that F(O) = 0, F(1) = t0 E F, Z = eie, 

0 = argZ = arg(F-'(D)). 
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From [9, p. 32, Theorem 9.1], the following system of equations 

(62) g + f LnIW - Ia(Q)j dDj = LnIWI, W E I, 

fa(t)jdDj= 1 

has a unique solution (g*, a*), g* = 0, and 

(63) @(t= 2TT f*(W) dW. 

Integration is done along F in the positive direction. 
Using the numerical method presented in [10], we have 

n a n-I'/ n-I/ 
(64) ~O(W(t)) = t + 

p-CS-tE (64) @(W(t)) = t + E 'sin jt- E -cosjt+ - 
j=1 J = I j=I J 

0 < t < 27r, where aj, f3} are constants. 
By solving the equations 

O(w(t)) = / = 1, N, N' 

the data values F1 = F(e'27I/N), / = 1, N, are obtained. 
We have written a complete program for the whole system. 
The input is the parametric representation of the curve F, and the output is the 

graph of the C.H.S. We give nine examples in [5]. 
Remark 4. If F is an arbitrary rectifiable Jordan curve, under a stronger assump- 

tion on the approximated function F, we can obtain 

(65) I-m J sD)dt = for all Z ED, 
maxI^,j _0 r D-Z rD-Z 

D = (D U F, D = interior to F). 
But the limit value on the left side of (65) is more complicated than in the special 

case where F is the circle, since in this case, we use P(Z)-the complex harmonic 
spline-in which case the boundary value of P(Z) is S(ZO). 

We shall discuss this in more detail in another paper. 
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